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Role of ammonia in NAFLD: An unusual suspect
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Summary
Mechanistically, the symptomatology and disease progression of non-alcoholic fatty liver disease
(NAFLD) remain poorly understood, which makes therapeutic progress difficult. In this review, we
focus on the potential importance of decreased urea cycle activity as a pathogenic mechanism. Urea
synthesis is an exclusive hepatic function and is the body’s only on-demand and definitive pathway
to remove toxic ammonia. The compromised urea cycle activity in NAFLD is likely caused by
epigenetic damage to urea cycle enzyme genes and increased hepatocyte senescence. When the urea
cycle is dysfunctional, ammonia accumulates in liver tissue and blood, as has been demonstrated in
both animal models and patients with NAFLD. The problem may be augmented by parallel changes
in the glutamine/glutamate system. In the liver, the accumulation of ammonia leads to inflam-
mation, stellate cell activation and fibrogenesis, which is partially reversible. This may be an
important mechanism for the transition of bland steatosis to steatohepatitis and further to
cirrhosis and hepatocellular carcinoma. Systemic hyperammonaemia has widespread negative ef-
fects on other organs. Best known are the cerebral consequences that manifest as cognitive dis-
turbances, which are prevalent in patients with NAFLD. Furthermore, high ammonia levels induce a
negative muscle protein balance leading to sarcopenia, compromised immune function and
increased risk of liver cancer. There is currently no rational way to reverse reduced urea cycle ac-
tivity but there are promising animal and human reports of ammonia-lowering strategies cor-
recting several of the mentioned untoward aspects of NAFLD. In conclusion, the ability of ammonia-
lowering strategies to control the symptoms and prevent the progression of NAFLD should be
explored in clinical trials.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
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Introduction
Non-alcoholic fatty liver disease (NAFLD) afflicts
about 25% of the global population, closely related
to the prevalence of adiposity.1 NAFLD is often
considered the hepatic manifestation of the meta-
bolic syndrome, wherein lipids accumulate in
ectopic sites such as the liver. The fatty liver disease
in itself is associated with cerebral, muscular and
several other extrahepatic manifestations.2,3 The
disease is generally a health threat due to its as-
sociation with cardiovascular disease and other
extrahepatic diseases.4 The liver-related impact of
the disease increases when it progresses from
bland steatosis to non-alcoholic steatohepatitis
(NASH) and fibrosis, to cirrhosis with its well-
known serious complications, and hepatocellular
carcinoma.5 The chronic exposure of the liver to
free fatty acids, exceeding its capacity for normal
energy metabolism by b-oxidation leads to lip-
otoxicity, triggering pro-inflammatory and pro-
apoptotic signalling pathways and inducing mito-
chondrial, peroxisomal and microsomal fatty acid
oxidation, with a resulting increase in the forma-
tion of hepatocyte-damaging reactive oxygen
species.6–8 The on-going liver inflammation also
induces activation of hepatic stellate cells (HSCs),
leading to collagen deposition and the develop-
ment of liver fibrosis.9 However, it remains unclear
how NAFLD leads to multiorgan symptoms and
which factors cause the transition from supposedly
innocuous hepatocyte fat infiltration to the
dangerous stages of the liver disease. Such knowl-
edge is of obvious importance given the huge
number of persons at risk. Therefore, there is an
avid and continuous quest for possible mechanistic
elements explaining the symptomatology of NAFLD
and its progression. Despite the high level of
research activity, the field remains wide open.

One obvious way to look for such mechanisms is
to focus on the functional consequences of hepa-
tocyte fat infiltration. It has been proposed that
fatty liver exhibits reduced liver regeneration ca-
pacity after partial hepatectomy, although data are
conflicting10–12 and changes in single mitochon-
drial and microsomal hepatocyte systems have
been described.13–15 Still, it has been the general
understanding that fatty liver has no severe func-
tional consequences. However, recent research
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Key points

� The mechanisms underlying the multiorgan symptoms and transition
of NAFLD from bland steatosis to steatohepatitis, cirrhosis and hepa-
tocellular carcinoma are incompletely understood.

� Urea cycle activity is compromised in NAFLD, likely owing to epigenetic
changes and increased hepatocyte senescence causing
hyperammonaemia.

� Hyperammonaemia has widespread negative effects, contributing to
liver fibrosis, sarcopenia, compromised immune responses, increased
oncogenicity and cognitive disturbances.

� We suggest that the ammonia accumulation that results from
decreased urea cycle activity contributes to the symptoms and pro-
gression of NAFLD.

� Ammonia lowering may be a novel therapeutic strategy to control the
symptoms and prevent the progression of NAFLD.

Review
shows that the condition does indeed compromise several
metabolic liver functions, even in the early stages of NAFLD
before advanced fibrosis and cirrhosis occur.16–20 The synthesis
of urea is one such liver function that is affected by steatosis. This
function is particularly pathophysiologically relevant because it
is present exclusively in hepatocytes and it is essential to the
maintenance of life. Intact urea synthesis and its appropriate
regulation are a prerequisite for normal whole body nitrogen
homeostasis and hence for maintenance of normal body
composition and health.

One of the important and exclusive functions of urea syn-
thesis is the on-demand and definitive disposal of ammonia.
Compromised urea synthesis invariably results in hyper-
ammonaemia. We propose that ammonia is of importance for
the symptomatology and progression of NAFLD. The underlying
mechanism of this reduction in urea cycle activity is thought to
be due to the effect of hepatocyte fat, which in itself damages the
genetic regulation of urea synthesis, leading first to ammonia
accumulation in the liver at the cellular level, and eventually to
systemic hyperammonaemia.19 Derangements in glutamine
metabolism might also play a role, with increased glutaminolysis
resulting in ammonia production and further demands for urea
synthesis.21,22 Liver ammonia accumulation has been shown to
initiate and maintain a hepatic inflammatory response that may
trigger the transition of bland steatosis to NASH and further to-
wards cirrhosis.23 Systemic hyperammonaemia is toxic to several
organs and the problem is aggravated with the progression of
NAFLD, with further dysfunction of the urea cycle and liver
zonation affecting glutamine synthetase. Thus, ammonia may be
an unexpected pathogenic factor, contributing to multiorgan
symptoms and disease progression in NAFLD, Fig. 1. In this re-
view we present the case for ammonia as a pathogenic factor in
NAFLD, go through the evidence implicating urea synthesis and
other contributory mechanisms, and give hints at how the
problem may be further studied and addressed.
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Fig. 1. Hyperammonaemia may explain multiorgan symptoms and disease
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Urea synthesis and its regulation
Urea cycle activity is an exclusive hepatic metabolic liver func-
tion. It is phylogenetically old and has served a variety of func-
tions during the evolution of species,24 from osmotic filler to
metabolic elimination of excess bicarbonate.25,26 In mammals,
urea synthesis serves in whole body nitrogen homeostasis
through its central role in amino acid metabolism. When amino-
nitrogen is available in excess, it is eliminated from the body via
the synthesis of urea27,28 so that the regulation of urea produc-
tion is the key to whole-body nitrogen balance. Urea synthesis is
an irreversible process as mammalian cells have no urease
activity.29

The five steps in the urea cycle are catalysed by five enzymes.
The first and second cycle enzymes, viz. carbamoyl phosphate
synthetase 1 (CPS1) and ornithine transcarbamylase (OTC), are
mitochondrial, while the other cycle enzymes, viz. arginino-
succinate synthetase 1, argininosuccinate lyase, and arginase 1,
the last finally producing urea,30 are cytosolic (Fig. 2). As the urea
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cycle is located partially in the mitochondria and partially in the
cytoplasm, its steps are not completely stoichiometrically
coupled. This means that urea cycle reactants are produced in
excess and are released into the blood when the cycle is loaded.
For instance, ornithine, which is not present in proteins, is
needed for the urea cycle to run and is produced by the cycle
itself.31 The cycle rate is controlled by the activity of the cycle
feeder enzyme CPS1. The moment-to-moment activity of CPS1 is
determined by the concentration of its obligatory allosteric
activator N-acetyl-glutamate and its long-term regulation by
induction of the transcription of the CPS1 gene. In health, the
capacity of the cycle is so abundant that near-saturation is never
approached.28

The rate of urea synthesis is linearly and immediately
dependent on its physiological substrate, the blood concentra-
tion of a-amino nitrogen, even in patients with cirrhosis 28; that
said, non-substrate regulation of urea synthesis also takes place
via modifications to this relationship.32 The intake and compo-
sition of food are important regulators; a high protein intake
gradually upregulates urea synthesis capacity via cycle enzyme
induction, whereas glucose intake rapidly decreases it.33–35 Also,
various hormones regulate urea synthesis in different directions.
The strongest and most important upregulator is glucagon,
which is involved in moment-to-moment regulation via its ef-
fects on N-acetyl-glutamate and in long-term regulation via in-
duction of the urea cycle genes.36–38 Downregulation of glucagon
by glucose and its insulin response is responsible for the fall in
urea synthesis and body nitrogen loss following carbohydrate
ingestion, an effect lost in cirrhosis.34,35 Like glucagon, cortisol
and adrenaline increase urea synthesis,39–41 whereas growth
hormone and insulin-like growth factor-1 both downregulate
it.42,43 Finally, appropriate functional liver mass is essential for
adequate urea production, and it follows that urea synthesis
capacity is decreased in patients with cirrhosis or compromised
liver function.28,44

Free amino acids in the blood pool are continuously and
rapidly utilised, converted, and metabolised – they are used for
protein synthesis and when metabolised their carbon skeletons
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are used for processes such as gluconeogenesis or fatty acid
synthesis. Ammonia is produced when amino acids are available
in excess of protein synthesis and their carbon skeletons are
metabolised, leaving behind ammonia. Ammonia production by
intestinal microbiota also contributes. As ammonia is highly
toxic to several tissues, several mechanisms are available to
remove it. The first line mechanism is transamination into non-
essential amino acids. However, this is not an option when
relevant carbon skeletons are not available or when amino acids
are already abundant. The next option is amidation of glutamate
to glutamine, which carries two nitrogen atoms, by the enzyme
glutamine synthetase. This ammonia scavenging mechanism is
ubiquitously active, including at a pivotal location in the peri-
venous hepatocytes, and has a very high affinity for ammonia.
However, its enzyme capacity is small and limited by the avail-
ability of glutamate, and it does not definitively dispose of
ammonia from the body. So, in the end, the body depends on
urea synthesis to eliminate excess amino-nitrogen originating
from surplus amino acids.
Dysregulation of urea synthesis in NAFLD
Several lines of investigation suggest an association between
NAFLD, impairment of urea synthesis, symptoms of NAFLD, and
progression of liver injury and fibrosis. As early as the 1990s, it
was shown that long-chain fatty acids promote perturbations in
urea cycle enzyme gene expression, resulting in hyper-
ammonaemia in rat primary cultured hepatocytes.45 A few years
later it was demonstrated that hepatic triglyceride accumulation
in cows inhibits ureagenesis and increases plasma ammonia
concentrations.46 Experiments from our own group in 2014
pursued these findings in an animal model. In rats fed a high-fat
high-cholesterol diet to induce NAFLD, we found a reduction in
gene expression of urea cycle enzymes, in particular OTC, and
showed that this resulted in downregulation of in vivo urea
synthesis capacity.18 Using the same model, we found a pro-
gressive reduction over time in the expression and activity of
urea cycle enzymes, resulting in hyperammonaemia and fibrosis
progression.47 These changes were reversible upon recovery
from NAFLD.19 Also in methionine- and choline-deficient mice
with fatty liver, urea cycle enzyme genes were found to be
downregulated48 and similar findings, alongside hyper-
ammonaemia, were observed in foz/fozmice fed a high-fat diet.49

In vitro, the findings were confirmed in primary steatotic
hepatocytes, demonstrating decreased gene expression of urea
cycle enzymes and increased ammonia levels in the supernatant,
alongside increased gene expression of pro-fibrogenic markers.
Also, in precision cut liver slices, we demonstrated increased
gene expression of pro-fibrogenic markers following lipid and/or
ammonia exposure.47

Additionally, also human NAFLD is associated with a reduc-
tion in gene and protein expression and activity of urea cycle
enzymes, as well as impairment of urea synthesis resulting in
hyperammonaemia.17,19,20,47 In patients with steatosis and NASH,
a progressive decrease in OTC enzyme concentration and activity
was observed, which was associated with increased plasma and
hepatic ammonia concentrations.19 Moreover, we observed a
functional reduction in the in vivo capacity for ureagenesis and,
at the same time, downregulation in the gene expression of most
urea cycle-related enzymes, especially in patients with
steatosis.17,20
3vol. 5 j 100780
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Other potential contributing mechanisms
Although the urea cycle in the liver is without question the key
player in ammonia metabolism and elimination, other pathways
and organs are also involved, Fig. 3. Glutamine metabolism is
important and takes place both in the perivenous hepatocytes in
the liver and in many other organs. The gut, kidneys and muscles
all play a role in ammonia production, detoxification and
excretion (involving glutamine metabolism and other mecha-
nisms). In cirrhosis, secondary organ system dysfunction can
lead to diminished ammonia detoxification and increased pro-
duction, but its contribution to hyperammonaemia in NAFLD has
not been adequately investigated and is currently unknown.

Hepatic glutamine metabolism
Emerging evidence suggests a disruption of glutamine meta-
bolism in NAFLD. In 1988, Kaiser et al. observed that glutamine
synthesis was decreased in vitro in steatotic liver slices exposed
to ammonium,50 whereas in vivo, increased hepatic gene and
protein levels of glutamine synthetase have been observed in
various animal models of NAFLD.21,22,49 In patients with NAFLD,
one study found a reduction in hepatic glutamine synthetase
that correlated with disease severity,19 whereas another study
found an increase at the gene level.20 Also, glutaminolysis seems
to be increased in NAFLD. Recent studies have reported over-
expression of hepatic glutaminase 1 in both mouse models of
diet-induced NASH and in the livers of patients with NASH.21 In
both animal and human NAFLD studies, the glutamate/glutamine
ratio levels were found to be increased in the liver and blood,
reflecting increased glutaminolysis.22,51 However, the studies
failed to show21 or report22 accumulation of ammonia in the
liver or hyperammonaemia, indicating that disturbances in the
glutamine/glutamate system alone are probably not enough to
increase ammonia levels.

Other organs
About half of the circulating ammonia load is derived from the
gut. Bacterial urease-hydrolysis of urea in faeces water, meta-
bolism of dietary proteins and the enzymatic breakdown of
amino acids (particularly de-amidation of glutamine) result in
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the formation of ammonia, which subsequently diffuses into the
portal circulation. Glutamine is the major energy source for small
intestinal enterocytes and therefore, enterocytes have high
glutaminase activity and low glutamine synthetase activity,
further contributing to intestinal ammonia release.52–54

Duodenal glutaminase activity has been reported to be four-
fold higher in patients with cirrhosis compared to healthy con-
trols, probably contributing to their hyperammonaemia55

together with deficient urea synthesis. In NAFLD, however, one
animal study found no change in the gene expression of
duodenal glutaminase 1,49 but this has not been investigated in
human NAFLD. However, microbiota alterations potentially lead
to an over-abundance of urease-producing bacteria in patients
with NAFLD.56,57

Glutamine synthetase activity is relatively low in muscles,58

yet they can greatly impact on ammonia metabolism due to
their great surface and mass. Ammonia can be both taken up and
released by the muscles,59 but ammonia uptake is limited in
healthy individuals.60 However, in patients with cirrhosis, high
arterial ammonia levels appear to drive net muscle ammonia
uptake and lead to net glutamine production.59 In line with this,
patients with cirrhosis and sarcopenia have been found to be
more likely to present with hyperammonaemia61,62 and, as NASH
and obesity are associated with a high risk of sarcopenia,63 the
same might be the case in these patients.

Renal ammonia production and excretion are essential for
maintenance of acid-base homeostasis and are regulated by a
variety of factors involving extracellular pH, potassium and
several hormones. Renal ammoniagenesis predominantly results
from glutamine metabolism by kidney-type glutaminase. In the
physiological state, besides urinary ammonia excretion, there is a
net ammonia release from the kidneys into the renal vein.64–66 In
patients with cirrhosis and hyperammonaemia, this blood
release decreases significantly,67 which seems to act as a pro-
tective mechanism in early hyperammonaemia68 and the kid-
neys are even able to further increase urinary ammonia
excretion.

So far, it has been consistently shown that urea synthesis is
disturbed in human and experimental NAFLD, but there is
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circumstantial evidence that other mechanisms play a part in
increasing ammonia levels in these patients. As urea synthesis is
the only on-demand high-capacity system for elimination of
ammonia, the decreased urea cycle capacity in NAFLD will play a
central role, notwithstanding other disturbances in ammonia
metabolism.
Potential mechanisms of urea cycle dysfunction in
NAFLD
The operative mechanisms for the observed damage to urea
cycle genes and enzymes and impairment of physiological urea
synthesis in NAFLD have not been fully elucidated, but epigenetic
changes and cellular senescence are candidates.

Epigenetic changes
We have shown that DNA hypermethylation of the promoter
regions of urea cycle enzyme genes are involved,19 as detailed
below. Epigenetic mechanisms are associated with the devel-
opment and progression of NAFLD and may mediate the effects
of environmental factors such as a western-style diet.69–72 Thus,
epigenetic alterations have been found to be involved in the
regulation of lipid metabolism, mitochondrial damage, oxidative
stress and inflammation.69 Both in experimental fatty liver dis-
ease and in human NAFLD, altered DNA methylation of genes
involved in steatohepatitis and the development of fibrosis was
observed and these changes were more pronounced in more
severe disease, again suggesting a mechanistic role for DNA
methylation in the progression of NAFLD.73–77 These changes
were reversible after weight loss and bariatric surgery, which led
to remodelling of the epigenetic signature.78,79

Specifically, in nitrogen metabolism, hypermethylated
transcription-repressed genes involved in ureagenesis and
amino acid metabolism have been observed in human NAFLD.79

Furthermore, downregulation of the flux-generating urea cycle
enzyme CPS1 in patients with NASH was demonstrated by pro-
teomic analyses.80 Also, our own in vitro and in vivo experimental
and human studies suggested that hypermethylation of the
promoter regions of urea cycle enzyme genes is one of the reg-
ulatory mechanisms responsible for the observed changes in
urea cycle enzymes induced by steatosis. We found that accu-
mulation of lipids in primary rat hepatocytes induces hyper-
methylation of the OTC promotor gene and eventually a decrease
in the gene expression of OTC. These observations were extended
by in vivo studies demonstrating hypermethylation of the pro-
moter region of OTC in rats and of both the CPS1 and OTC genes in
patients with NAFLD, which in fact overlapped with hyper-
methylated regions in the OTC gene in rats.19 However, the
mechanism by which hepatocyte fat accumulation results in
increased methylation, predominantly of the mitochondrial urea
cycle enzyme genes, has not yet been clarified.

Cellular senescence
Cellular senescence refers to a state of stable cell cycle arrest that
can be triggered by various types of cellular and environmental
stress. Cellular senescence is suggested to play a role in modu-
lating inflammation and the accumulation of fat in NAFLD.81 An
important indicator for the presence of senescence in NAFLD is
the overexpression of the tumour-suppressor gene p53 in human
biopsies, which is a canonical inducer of senescence.82 The few
studies exploring the relationship between cellular senescence
JHEP Reports 2023
and hyperammonaemia suggest that ammonia may directly
induce senescence in astrocytes and hepatocytes.83–87 This in-
cludes overexpression of p53, that has been found to suppress
ureagenesis via transcriptional downregulation of urea cycle
enzymes.88 Along similar lines, p53 activation by ammonia in
mice led to a reduction in the expression of urea cycle genes.88

Conversely, knock-down of urea cycle genes activated p53, sug-
gesting a bidirectional relationship between senescence and urea
synthesis. Considering the increased expression of p53 in NAFLD
animal models and human liver tissue, senescence may
contribute to the further suppression of urea cycle function in
patients with NAFLD and thus make them prone to hyper-
ammonaemia, but this mechanism has not been fully explored.
Ammonia: more than a neurotoxin
A decrease in the capacity for ureagenesis, as seen in cirrhosis
and NAFLD, compromises the patient’s ability to eliminate
ammonia, classically resulting in an increased risk of dyscogni-
tion and eventually overt hepatic encephalopathy (HE). However,
other organs are also affected, Fig. 4.
Cognitive dysfunction
The brain is the most studied organ in relation to hyper-
ammonaemia due to the serious clinical problem of HE in liver
disease. High ammonia levels in combination with systemic
inflammation play central roles in the pathogenesis of HE.89,90

Humans and animals with NAFLD suffer from cerebral func-
tional deficits. In recent years, cognitive deficits have been
increasingly recognised as a complication of NAFLD, including in
the early stages of the disease when there is no evidence of liver
failure.91 The patients often have problems with memory,
attention, concentration, forgetfulness and confusion, which is
associated with a negative impact on everyday living and quality
of life.92–94 Most recently, a comprehensive study on neuropsy-
chological functions in patients with NAFLD confirmed impair-
ment in attention, mental concentration, psychomotor speed,
cognitive flexibility, inhibitory mental control, and working
memory.95 Such deficits have clear parallels to minimal HE, but it
remains uncertain whether high ammonia is causally and
obligatorily involved in the same way. Likewise, the term for this
mental condition of NAFLD remains unsettled. HE is not appro-
priate because this term by definition assumes the presence of
advanced liver disease.
Induction of liver fibrosis
In the liver, hyperammonaemia is an important driver of acti-
vation of HSCs.23 HSCs are the main cell type responsible for
extracellular matrix deposition and are key in the development
of fibrosis and portal hypertension.96 We have previously
demonstrated that pathological ammonia concentrations pro-
duce changes in the behaviour of cultured human HSCs,
including significant alterations in cellular morphology, reactive
oxygen species production and further HSC activation.23 Removal
of ammonia from the cell cultures restored HSC morphology and
function towards normality, indicating that the changes in HSCs
induced by ammonia are reversible.23 These in vitro data were
substantiated in vivo in bile duct-ligated rats with advanced
fibrosis and hyperammonaemia where pharmacological
ammonia lowering reduced HSC activation and portal pressure.23
5vol. 5 j 100780
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Sarcopenia
Sarcopenia and NAFLD are associated conditions.3,97–100 The
relationship becomes more prominent with progression of dis-
ease, as seen in patients with NASH and fibrosis, and is inde-
pendent of metabolic risk factors.98–100 In NASH cirrhosis,
sarcopenia associates with increased mortality as in other
cirrhosis aetiologies.63

Hyperammonaemia resulting from compromised urea syn-
thesis may constitute a mechanistic link between NAFLD and
sarcopenia, similar to that proposed for cirrhosis.101 Pathological
levels of ammonia may induce metabolic and molecular changes
with detrimental effects on muscle mass and function.101,102 It
has been suggested that high ammonia levels not only favour
muscle formation of glutamine from glutamate, but also the
conversion of a-ketoglutarate to glutamate.103–105 This leads to
depletion of tricarboxylic acid cycle intermediates, which in turn
impairs ATP generation. This relative energy failure causes
impaired contractile function together with increased muscle
protein break down and reduced protein synthesis.103,105

Hyperammonaemia-induced alterations in mitochondrial meta-
bolism also induces increased generation of reactive oxygen
species coupled with oxidative damage to muscle protein.105

Moreover, ammonia itself may contribute to the development
and aggravation of sarcopenia by increasing myostatin
JHEP Reports 2023
expression, a known inhibitor of protein synthesis and activator
of autophagy.104,106–108 Conversely, sarcopenia could cause
hyperammonaemia due to the reduced detoxification capacity of
glutamine synthetase.109 Accordingly, ammonia may be a driver
as well as a result of sarcopenia. Also, it should be noted that
sarcopenia is not merely a question of mass, but also of muscle
quality and strength. Indeed, a recent study reported intact and
even increased muscle mass in patients with NAFLD, but these
patients also exhibited myosteatosis.110 In cirrhosis, myosteatosis
has been associated with increased blood ammonia levels and
risk of encephalopathy.111

Immune dysfunction
Patients with NAFLD have increased mortality from infections,112

however, the mechanisms behind this observation have not been
well investigated. Previously, we observed a dysfunctional innate
immune response following endotoxin exposure in rats with
diet-induced NASH and reduced urea synthesis.113 The func-
tionality of circulating immune cells is also compromised in
human NASH114 and we found that patients with NAFLD
demonstrated increased activation and functional priming of
blood neutrophils, which was most marked in patients with
NASH.115 We suggest that hyperammonaemia contributes to the
immune dysfunction characteristic of NAFLD in the same way as
6vol. 5 j 100780



proposed in patients with cirrhosis.116 Ammonia may reduce
neutrophil chemotaxis117 and induce neutrophil swelling and
impaired phagocytosis.116 Also, hyperammonaemia reduces
dendritic cell count, antigen uptake and allogenic lymphocyte
stimulation through cell swelling, excessive reactive oxygen
species production and mitochondrial dysfunction in dendritic
cells from mice, as well as diminishing dendritic cell phagocy-
tosis ex vivo in samples from mice and patients with cirrhosis.118

Cancer
NAFLD is associated with an increased risk of cancer in general119

and particularly of hepatocellular carcinoma even before the
development of cirrhosis.120 The increased cancer risk may be
related to hyperammonaemia. Regarding the high risk of hepa-
tocellular carcinoma, the structural changes associated with
NAFLD, including hypo-vascularisation, favour the growth of
cells that use ammonia as a nitrogen source for DNA synthesis,
and ammonia increases the proliferation rate of cancer cells.121 It
was already demonstrated in 1955 that immortalised adenocar-
cinoma cells increase their growth rate in the presence of
ammonia, which acts as a nitrogen donor for the de novo
biosynthesis of pyrimidine.122 Patients with metastatic cancer
exhibit markedly greater ammonia accumulation in the liver
compared to patients with mild and severe liver disease.123 The
addition of ammonia to cell culture media has been shown to
increase proliferation of breast cancer cells,124 while loss of urea
cycle enzymes in some tumour cells promotes proliferation by
facilitating pyrimidine synthesis.125 It has also been demon-
strated that ammonia promotes proliferation of cancer cells
lacking the tumour suppressor p53.88 Further in support of the
role of ammonia in hepatocellular carcinoma, the anti-cancer
effect of targeting the high expression of heat shock proteins in
such tumour cells seems to inhibit the use of ammonia by cancer
cells for malignant transformation.126 There is thus evidence
indicating that ammonia is involved in oncogenesis, and partic-
ularly hepatocarcinogenesis.
Limitations of published data
Taken together, there is a large body of data incriminating urea
synthesis and ammonia in NAFLD. However, the data have to be
sought for in many different categories of publications often not
focused directly on the issue, and none of them cover the com-
plete chain of evidence. Interpretative extrapolations are neces-
sary to piece together the full picture. The most direct data and
the largest experimental data mass rely on animal NAFLD models
with the limitations implied by this approach. In humans there
are solid data on the impairment of urea synthesis but less so on
hyperammonaemia, and only associative data on ammonia and
disease course. More observational, mechanistic and interven-
tional data in humans are needed to move the field forward. We
need systematic longitudinal descriptions of ammonia together
with NAFLD disease stages and markers of metabolic and in-
flammatory disease activity. Ideally, such data should be acces-
sible from the numerous randomised trials conducted. Regarding
interventional studies, drugs with a supposed or demonstrated
ammonia lowering mode of action are available or under
investigation.

Another limitation is that hyperammonaemia may not be
straightforward to identify. Blood sample analyses are notori-
ously sensitive to disturbances and particular care and diligence
are required throughout collection, transportation and analysis,
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which poses challenges in clinical settings and even in clinical
research protocols. This is particularly the case for moderate
hyperammonaemia because local laboratories may calibrate
their ammonia analysis for differential diagnostic purposes such
as serious brain symptoms. Thus, there is no universal upper
threshold for normal blood ammonia concentration or patho-
logical hyperammonaemia in venous or arterial blood and we
have to rely on local norms and criteria, and information on how
these are defined. A way to aim for standardisation could be to
normalise ammonia levels to an upper limit of normal at the
respective reference laboratory.
Perspectives
Urea cycle activity as a target for NAFLD treatment
The first rational approach to target the decreased urea cycle
activity in NAFLD would be to manipulate (viz. increase) urea
synthesis capacity. Increased protein intake over time markedly
increases the urea cycle’s capacity to clear nitrogen, and this
mechanism is intact although weakened in cirrhosis.127 It is not
known if the effect is intact in fatty liver diseases. Still, the effects
of a high protein diet might be worth studying in NAFLD. The
effect of high protein on urea synthesis seems not to involve the
action of glucagon. As glucagon is the most potent upregulator of
urea synthesis,37 treatment with exogenous glucagon or
glucagon secretagogues seems an obvious option. However, urea
synthesis becomes unresponsive to glucagon in cirrhosis,128 a
phenomenon that would also be expected to occur in NAFLD,
with its high glucagon levels. Also, glucagon may add to the risk
of developing diabetes in such patients.129 Currently, there is no
established way to counteract the epigenetic effects on the urea
cycle in vivo. Pharmacologically, non-selective beta blockers have
been shown to increase urea synthesis capacity in healthy in-
dividuals and those with cirrhosis 130; however, their long-term
effect on ammonia is not known. Patients with NAFLD with
arterial or portal hypertension may benefit from beta-blockade
and it remains to be studied if they gain additional metabolic
benefit from the treatment. Zinc is an obligatory co-factor for the
OTC urea gene and zinc supplementation improves urea syn-
thesis capacity in cirrhosis131 but the effect of zinc in NAFLD
remains unknown. At present it is not possible or feasible to
normalise the decreased urea synthesis capacity in NAFLD.

Ammonia as a target for NAFLD treatment
The non-adsorbable disaccharide lactulose and, more recently,
the antibiotic rifaximin as an add-on, are used as standard of care
for HE and hyperammonaemia, with the aim of lowering
ammonia production in the gut.132 Branched-chain amino acids
and LOLA (L-ornithine L-aspartate) have been used with varying
success to increase the incorporation of ammonia into gluta-
mine.133 In genetic urea cycle disorders, hyperammonaemia is
treated with metabolic ammonia scavengers, such as benzoic
acid and phenylbutyrate (pro-drug to phenylacetate).134 Benzoic
acid is conjugated to glycine in the liver to form hippuric acid,
which is then excreted in the urine. Other ammonia scavengers
are currently under investigation for the treatment of hyper-
ammonaemia related to cirrhosis and acute liver failure, such as
ornithine phenylactetate (OP).135,136 Transamination of ornithine
produces glutamate which then binds to ammonia to form
glutamine. Glutamine then binds to phenylacetate producing
phenylacetylglutamine, which is excreted in the urine and
removes two nitrogen atoms from the body. In bile duct-ligated
7vol. 5 j 100780
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rats, a reduction in blood ammonia levels using OP was
observed137 and in a follow-up study this was associated with a
reduction in HSC activation markers and portal pressure.23

Recently, in patients hospitalised with an episode of HE, OP
dose-dependently reduced ammonia levels and an association
between reduced ammonia levels and improvement in HE stage
was observed.138 Ammonia lowering likely has a clinically
meaningful beneficial effect on liver function and portal pressure
in human cirrhosis, as indirectly demonstrated in clinical trials
assessing lactulose for the prevention and treatment of HE,
which showed reduced occurrence of decompensation episodes
and reduced mortality.139 However, no clinical studies have
investigated the direct effect of ammonia lowering on liver
function and disease course.

Ammonia-lowering as a treatment for NAFLD has been
investigated in in vitro studies and in an animal model. In
steatotic rat liver slices, we demonstrated that adding OP to the
medium decreased ammonia levels and reduced the severity of
fibrosis, demonstrated by decreased collagen deposition.47 Also
in vivo, we found that the activation of HSCs and subsequent
fibrosis due to NAFLD-related reduced urea synthesis
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and hyperammonaemia can be reversed by ammonia
scavenging using OP. In the same model, OP was reported to
prevent hepatocyte cell death and reduce fibrosis – this was
associated with the restoration of urea cycle enzyme
gene expression and activity, and reduced ammonia concen-
trations as well as inflammation markers in liver tissue.47

Another study in a NAFLD mouse model used LOLA as an
ammonia-lowering strategy, which had a beneficial effect on
skeletal muscle, but failed to reduce ammonia levels, which
was probably the explanation for the lack of improvement on
liver histology.49
Conclusions
As presented, there is now substantial circumstantial evidence
for the concept that reduced urea synthesis caused by steatosis-
induced dysfunction of urea cycle enzyme genes leads to
hyperammonaemia, which contributes to the symptoms of
NAFLD and is of pathogenic importance for its progression. The
hypothesis incriminates ammonia as the effector and provides
the rationale for its therapeutic targeting in NAFLD.
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